基于图像增强与GC-YOLO v5s的水下环境河蟹识别轻量化模型研究
摘要: 利用机器视觉技术识别水下河蟹目标是实现河蟹养殖装备智能化的有效途径之一。针对水下环境目标识别困难、河蟹包含特征信息少、主流的目标检测模型复杂度高等问题,在YOLO v5s的基础上提出了一种适用于水下环境的轻量级河蟹识别模型GC-YOLO v5s(GhostNetV2-CBAM-YOLO v5s)。利用改进的图像增强算法对水下河蟹图像进行预处理以改善其质量;为降低模型复杂度,提出... (共9页)
开通会员,享受整站包年服务